A note on nodal non-radially symmetric solutions to Emden-Fowler equations
Electronic Journal of Differential Equations, Tome 2009 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove the existence of an unbounded sequence of sign-changing and non-radially symmetric solutions to the problem $-\Delta u = |u|^{p-1}u$ in $\Omega, u = 0$ on $\partial\Omega, u(gx)= u(x), x\in \Omega, g\in G$, where $\Omega$ is an annulus of $\mathbb{R}^N (N\geq 3), 1$ and $G$ is a non-transitive closed subgroup of the orthogonal group $O(N)$.
Classification : 35J20, 35J25, 35B99
Keywords: Emden-Fowler equation, nodal solutions, symmetric solutions, variational methods
@article{EJDE_2009__2009__a89,
     author = {Ramos, Miguel and Zou, Wenming},
     title = {A note on nodal non-radially symmetric solutions to {Emden-Fowler} equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2009},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a89/}
}
TY  - JOUR
AU  - Ramos, Miguel
AU  - Zou, Wenming
TI  - A note on nodal non-radially symmetric solutions to Emden-Fowler equations
JO  - Electronic Journal of Differential Equations
PY  - 2009
VL  - 2009
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a89/
LA  - en
ID  - EJDE_2009__2009__a89
ER  - 
%0 Journal Article
%A Ramos, Miguel
%A Zou, Wenming
%T A note on nodal non-radially symmetric solutions to Emden-Fowler equations
%J Electronic Journal of Differential Equations
%D 2009
%V 2009
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a89/
%G en
%F EJDE_2009__2009__a89
Ramos, Miguel; Zou, Wenming. A note on nodal non-radially symmetric solutions to Emden-Fowler equations. Electronic Journal of Differential Equations, Tome 2009 (2009). http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a89/