Mild solutions for semilinear fractional differential equations
Electronic Journal of Differential Equations, Tome 2009 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper concerns the existence of mild solutions for fractional semilinear differential equation with non local conditions in the $\alpha$-norm. We prove existence and uniqueness, assuming that the linear part generates an analytic compact bounded semigroup, and the nonlinear part is a Lipschitz continuous function with respect to the fractional power norm of the linear part.
Classification : 34K05, 34A12, 34A40
Keywords: fractional differential equation
@article{EJDE_2009__2009__a82,
     author = {Mophou, Gisele M. and N'Guerekata, Gaston M.},
     title = {Mild solutions for semilinear fractional differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2009},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a82/}
}
TY  - JOUR
AU  - Mophou, Gisele M.
AU  - N'Guerekata, Gaston M.
TI  - Mild solutions for semilinear fractional differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2009
VL  - 2009
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a82/
LA  - en
ID  - EJDE_2009__2009__a82
ER  - 
%0 Journal Article
%A Mophou, Gisele M.
%A N'Guerekata, Gaston M.
%T Mild solutions for semilinear fractional differential equations
%J Electronic Journal of Differential Equations
%D 2009
%V 2009
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a82/
%G en
%F EJDE_2009__2009__a82
Mophou, Gisele M.; N'Guerekata, Gaston M. Mild solutions for semilinear fractional differential equations. Electronic Journal of Differential Equations, Tome 2009 (2009). http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a82/