A remark on the regularity for the 3D Navier-Stokes equations in terms of the two components of the velocity
Electronic Journal of Differential Equations, Tome 2009 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this note, we study the regularity of Leray-Hopf weak solutions to the Navier-Stokes equation, with the condition $$ \nabla (u_{1},u_{2},0) \in L^{\frac{2}{1-r}}(0,T; \dot{\mathcal{M}}_{2,3/r} (\mathbb{R}^3) , $$ where $$ L^{1/3}(\mathbb{R}^3)\subset \dot{X}_r( \mathbb{R}^3) \subset \dot{\mathcal{M}}_{2,3/r}(\mathbb{R}^3), $$ the above regularity condition allows us to improve the results obtained by Fan and Gao [6].
Classification : 35Q30, 35K15, 76D05
Keywords: Navier-Stokes equations, regularity criterion, Morrey-campanato spaces
@article{EJDE_2009__2009__a75,
     author = {Gala, Sadek},
     title = {A remark on the regularity for the {3D} {Navier-Stokes} equations in terms of the two components of the velocity},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2009},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a75/}
}
TY  - JOUR
AU  - Gala, Sadek
TI  - A remark on the regularity for the 3D Navier-Stokes equations in terms of the two components of the velocity
JO  - Electronic Journal of Differential Equations
PY  - 2009
VL  - 2009
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a75/
LA  - en
ID  - EJDE_2009__2009__a75
ER  - 
%0 Journal Article
%A Gala, Sadek
%T A remark on the regularity for the 3D Navier-Stokes equations in terms of the two components of the velocity
%J Electronic Journal of Differential Equations
%D 2009
%V 2009
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a75/
%G en
%F EJDE_2009__2009__a75
Gala, Sadek. A remark on the regularity for the 3D Navier-Stokes equations in terms of the two components of the velocity. Electronic Journal of Differential Equations, Tome 2009 (2009). http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a75/