Existence and analyticity of a parabolic evolution operator for nonautonomous linear equations in Banach spaces
Electronic Journal of Differential Equations, Tome 2009 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give conditions for the parabolic evolution operator to be analytic with respect to a coefficient operator. We also show that the solution of a homogeneous parabolic evolution equation is analytic with respect to the coefficient operator and to the initial data. We apply our results to example that can not be studied by the standard methods.
Classification : 35K90, 46T25, 47N20, 47L05
Keywords: linear equation, parabolic equation, nonautonomous
@article{EJDE_2009__2009__a7,
     author = {Munhoz, Antonio S. and Filho, Antonio C.Souza},
     title = {Existence and analyticity of a parabolic evolution operator for nonautonomous linear equations in {Banach} spaces},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2009},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a7/}
}
TY  - JOUR
AU  - Munhoz, Antonio S.
AU  - Filho, Antonio C.Souza
TI  - Existence and analyticity of a parabolic evolution operator for nonautonomous linear equations in Banach spaces
JO  - Electronic Journal of Differential Equations
PY  - 2009
VL  - 2009
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a7/
LA  - en
ID  - EJDE_2009__2009__a7
ER  - 
%0 Journal Article
%A Munhoz, Antonio S.
%A Filho, Antonio C.Souza
%T Existence and analyticity of a parabolic evolution operator for nonautonomous linear equations in Banach spaces
%J Electronic Journal of Differential Equations
%D 2009
%V 2009
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a7/
%G en
%F EJDE_2009__2009__a7
Munhoz, Antonio S.; Filho, Antonio C.Souza. Existence and analyticity of a parabolic evolution operator for nonautonomous linear equations in Banach spaces. Electronic Journal of Differential Equations, Tome 2009 (2009). http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a7/