A class of generalized integral operators
Electronic Journal of Differential Equations, Tome 2009 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we introduce a class of generalized integral operators that includes Fourier integral operators. We establish some conditions on these operators such that they do not have bounded extension on $L^{2}(\mathbb{R}^{n})$. This permit us in particular to construct a class of Fourier integral operators with bounded symbols in $S_{1,1}^{0}(\mathbb{R}^{n}\times \mathbb{R}^{n})$ and in $\bigcap_{0\rho 1}S_{\rho ,1}^{0} (\mathbb{R}^{n}\times \mathbb{R}^{n})$ which cannot be extended to bounded operators in $L^{2}(\mathbb{R}^{n})$.
Classification : 35S30, 35S05, 47A10, 35P05
Keywords: integral operators, L2-boundedness, unbounded Fourier integral operators
@article{EJDE_2009__2009__a45,
     author = {Bekkara, Samir and Messirdi, Bekkai and Senoussaoui, Abderrahmane},
     title = {A class of generalized integral operators},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2009},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a45/}
}
TY  - JOUR
AU  - Bekkara, Samir
AU  - Messirdi, Bekkai
AU  - Senoussaoui, Abderrahmane
TI  - A class of generalized integral operators
JO  - Electronic Journal of Differential Equations
PY  - 2009
VL  - 2009
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a45/
LA  - en
ID  - EJDE_2009__2009__a45
ER  - 
%0 Journal Article
%A Bekkara, Samir
%A Messirdi, Bekkai
%A Senoussaoui, Abderrahmane
%T A class of generalized integral operators
%J Electronic Journal of Differential Equations
%D 2009
%V 2009
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a45/
%G en
%F EJDE_2009__2009__a45
Bekkara, Samir; Messirdi, Bekkai; Senoussaoui, Abderrahmane. A class of generalized integral operators. Electronic Journal of Differential Equations, Tome 2009 (2009). http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a45/