Asymptotic behavior of solutions to Cauchy-Dirichlet problems for second-order hyperbolic equations in cylinder with non-smooth base
Electronic Journal of Differential Equations, Tome 2009 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper concerns a Cauchy-Dirichlet problem for second-order hyperbolic equations in infinite cylinders with the base containing conical points. Some results on the asymptotical expansions of generalized solutions of this problem are given.
Classification : 35L05, 35L15, 35L20
Keywords: generalized solution, asymptotic, conical point on the boundary, non-smooth domains
@article{EJDE_2009__2009__a4,
     author = {Nguyen Manh Hung and Kim, Bui Trong},
     title = {Asymptotic behavior of solutions to {Cauchy-Dirichlet} problems for second-order hyperbolic equations in cylinder with non-smooth base},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2009},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a4/}
}
TY  - JOUR
AU  - Nguyen Manh Hung
AU  - Kim, Bui Trong
TI  - Asymptotic behavior of solutions to Cauchy-Dirichlet problems for second-order hyperbolic equations in cylinder with non-smooth base
JO  - Electronic Journal of Differential Equations
PY  - 2009
VL  - 2009
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a4/
LA  - en
ID  - EJDE_2009__2009__a4
ER  - 
%0 Journal Article
%A Nguyen Manh Hung
%A Kim, Bui Trong
%T Asymptotic behavior of solutions to Cauchy-Dirichlet problems for second-order hyperbolic equations in cylinder with non-smooth base
%J Electronic Journal of Differential Equations
%D 2009
%V 2009
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a4/
%G en
%F EJDE_2009__2009__a4
Nguyen Manh Hung; Kim, Bui Trong. Asymptotic behavior of solutions to Cauchy-Dirichlet problems for second-order hyperbolic equations in cylinder with non-smooth base. Electronic Journal of Differential Equations, Tome 2009 (2009). http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a4/