Inverse eigenvalue problems for semilinear elliptic equations
Electronic Journal of Differential Equations, Tome 2009 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the inverse nonlinear eigenvalue problem for the equation $$\displaylines{ -\Delta u + f(u) = \lambda u, \quad u > 0 \quad \hbox{in } \Omega,\cr u = 0 \quad \hbox{on } \partial\Omega, }$$ where $f(u)$ is an unknown nonlinear term, $\Omega \subset \mathbb{R}^N$ is a bounded domain with an appropriate smooth boundary $\partial\Omega$ and $\lambda > 0$ is a parameter. Under basic conditions on $f$, for any given $\alpha > 0$, there exists a unique solution $(\lambda, u) = (\lambda(\alpha), u_\alpha) \in \mathbb{R}_+ \times C^2(\bar{\Omega})$ with $\|u_\alpha\|_2 = \alpha$. The curve $\lambda(\alpha)$ is called the $L^2$-bifurcation branch. Using a variational approach, we show that the nonlinear term $f(u)$ is determined uniquely by $\lambda(\alpha)$.
Classification : 35P30
Keywords: inverse eigenvalue problems, nonlinear elliptic equation, variational method
@article{EJDE_2009__2009__a30,
     author = {Shibata, Tetsutaro},
     title = {Inverse eigenvalue problems for semilinear elliptic equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2009},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a30/}
}
TY  - JOUR
AU  - Shibata, Tetsutaro
TI  - Inverse eigenvalue problems for semilinear elliptic equations
JO  - Electronic Journal of Differential Equations
PY  - 2009
VL  - 2009
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a30/
LA  - en
ID  - EJDE_2009__2009__a30
ER  - 
%0 Journal Article
%A Shibata, Tetsutaro
%T Inverse eigenvalue problems for semilinear elliptic equations
%J Electronic Journal of Differential Equations
%D 2009
%V 2009
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a30/
%G en
%F EJDE_2009__2009__a30
Shibata, Tetsutaro. Inverse eigenvalue problems for semilinear elliptic equations. Electronic Journal of Differential Equations, Tome 2009 (2009). http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a30/