Existence of quadratic-mean almost periodic solutions to some stochastic hyperbolic differential equations
Electronic Journal of Differential Equations, Tome 2009 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we obtain the existence of quadratic-mean almost periodic solutions to some classes of partial hyperbolic stochastic differential equations. The main result of this paper generalizes in a natural fashion some recent results by authors. As an application, we consider the existence of quadratic-mean almost periodic solutions to the stochastic heat equation with divergence terms.
Classification : 34K14, 60H10, 35B15, 34F05
Keywords: stochastic differential equation, stochastic processes, quadratic-mean almost periodicity, Wiener process
@article{EJDE_2009__2009__a29,
     author = {Bezandry, Paul H. and Diagana, Toka},
     title = {Existence of quadratic-mean almost periodic solutions to some stochastic hyperbolic differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2009},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a29/}
}
TY  - JOUR
AU  - Bezandry, Paul H.
AU  - Diagana, Toka
TI  - Existence of quadratic-mean almost periodic solutions to some stochastic hyperbolic differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2009
VL  - 2009
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a29/
LA  - en
ID  - EJDE_2009__2009__a29
ER  - 
%0 Journal Article
%A Bezandry, Paul H.
%A Diagana, Toka
%T Existence of quadratic-mean almost periodic solutions to some stochastic hyperbolic differential equations
%J Electronic Journal of Differential Equations
%D 2009
%V 2009
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a29/
%G en
%F EJDE_2009__2009__a29
Bezandry, Paul H.; Diagana, Toka. Existence of quadratic-mean almost periodic solutions to some stochastic hyperbolic differential equations. Electronic Journal of Differential Equations, Tome 2009 (2009). http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a29/