Positivity and stability for a system of transport equations with unbounded boundary perturbations
Electronic Journal of Differential Equations, Tome 2009 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article concerns wellposedness, positivity and spectral properties of the solution of a system of transport equations with unbounded boundary perturbations. In particular we obtain that the rescaled solution converges to the unique steady-state solution as time approaches infinity on a weighted L^1-space.
Classification : 47D06, 46B42, 34D05, 34G10, 47A10, 47A55, 47B65
Keywords: system of transport equations, C_0-semigroup, irreducibility, dominant eigenvalue, asymptotic properties, unbounded boundary perturbation
@article{EJDE_2009__2009__a28,
     author = {D'Apice, Ciro and El Habil, Brahim and Rhandi, Abdelaziz},
     title = {Positivity and stability for a system of transport equations with unbounded boundary perturbations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2009},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a28/}
}
TY  - JOUR
AU  - D'Apice, Ciro
AU  - El Habil, Brahim
AU  - Rhandi, Abdelaziz
TI  - Positivity and stability for a system of transport equations with unbounded boundary perturbations
JO  - Electronic Journal of Differential Equations
PY  - 2009
VL  - 2009
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a28/
LA  - en
ID  - EJDE_2009__2009__a28
ER  - 
%0 Journal Article
%A D'Apice, Ciro
%A El Habil, Brahim
%A Rhandi, Abdelaziz
%T Positivity and stability for a system of transport equations with unbounded boundary perturbations
%J Electronic Journal of Differential Equations
%D 2009
%V 2009
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a28/
%G en
%F EJDE_2009__2009__a28
D'Apice, Ciro; El Habil, Brahim; Rhandi, Abdelaziz. Positivity and stability for a system of transport equations with unbounded boundary perturbations. Electronic Journal of Differential Equations, Tome 2009 (2009). http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a28/