Strong monotonicity for analytic ordinary differential equations
Electronic Journal of Differential Equations, Tome 2009 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We present a necessary and sufficient criterion for the flow of an analytic ordinary differential equation to be strongly monotone; equivalently, strongly order-preserving. The criterion is given in terms of the reducibility set of the derivative of the right-hand side. Some applications to systems relevant in biology and ecology, including nonlinear compartmental systems, are discussed.
Classification : 37C65, 37C25, 92C45, 34A12
Keywords: monotone dynamical system, limit set, irreducible, compartmental model
@article{EJDE_2009__2009__a148,
     author = {Walcher, Sebastian and Zanders, Christian},
     title = {Strong monotonicity for analytic ordinary differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2009},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a148/}
}
TY  - JOUR
AU  - Walcher, Sebastian
AU  - Zanders, Christian
TI  - Strong monotonicity for analytic ordinary differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2009
VL  - 2009
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a148/
LA  - en
ID  - EJDE_2009__2009__a148
ER  - 
%0 Journal Article
%A Walcher, Sebastian
%A Zanders, Christian
%T Strong monotonicity for analytic ordinary differential equations
%J Electronic Journal of Differential Equations
%D 2009
%V 2009
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a148/
%G en
%F EJDE_2009__2009__a148
Walcher, Sebastian; Zanders, Christian. Strong monotonicity for analytic ordinary differential equations. Electronic Journal of Differential Equations, Tome 2009 (2009). http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a148/