Oscillation and nonoscillation criteria for two-dimensional time-scale systems of first-order nonlinear dynamic equations
Electronic Journal of Differential Equations, Tome 2009 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Oscillation criteria for two-dimensional difference and differential systems of first-order linear difference equations are generalized and extended to nonlinear dynamic equations on arbitrary time scales. This unifies and extends under one theory previous linear results from discrete and continuous systems. An example is given illustrating that a key theorem is sharp on all time scales.
Classification : 34B10, 39A10
Keywords: nonoscillation, nonlinear system, time scales
@article{EJDE_2009__2009__a109,
     author = {Anderson, Douglas R.},
     title = {Oscillation and nonoscillation criteria for two-dimensional time-scale systems of first-order nonlinear dynamic equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2009},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a109/}
}
TY  - JOUR
AU  - Anderson, Douglas R.
TI  - Oscillation and nonoscillation criteria for two-dimensional time-scale systems of first-order nonlinear dynamic equations
JO  - Electronic Journal of Differential Equations
PY  - 2009
VL  - 2009
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a109/
LA  - en
ID  - EJDE_2009__2009__a109
ER  - 
%0 Journal Article
%A Anderson, Douglas R.
%T Oscillation and nonoscillation criteria for two-dimensional time-scale systems of first-order nonlinear dynamic equations
%J Electronic Journal of Differential Equations
%D 2009
%V 2009
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a109/
%G en
%F EJDE_2009__2009__a109
Anderson, Douglas R. Oscillation and nonoscillation criteria for two-dimensional time-scale systems of first-order nonlinear dynamic equations. Electronic Journal of Differential Equations, Tome 2009 (2009). http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a109/