Boundedness of solutions for a Liénard equation with multiple deviating arguments
Electronic Journal of Differential Equations, Tome 2009 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the Lienard equation $$ x''(t)+f_1 (x(t)) (x'(t))^{2}+f_2 (x(t)) x'(t)+g_0(x(t)) +\sum_{j=1}^{m} g_{j}(x(t-\tau_{j}(t)))=p(t), $$ where $f_1, f_2, g_1 $ and $g_2$ are continuous functions, the delays $\tau_j(t)\geq 0$ are bounded continuous, and $p(t)$ is a bounded continuous function. We obtain sufficient conditions for all solutions and their derivatives to be bounded.
Classification : 34C25, 34K13, 34K25
Keywords: Liénard equation, deviating argument, bounded solution
@article{EJDE_2009__2009__a0,
     author = {Yu, Yuehua and Zhao, Changhong},
     title = {Boundedness of solutions for a {Li\'enard} equation with multiple deviating arguments},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2009},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a0/}
}
TY  - JOUR
AU  - Yu, Yuehua
AU  - Zhao, Changhong
TI  - Boundedness of solutions for a Liénard equation with multiple deviating arguments
JO  - Electronic Journal of Differential Equations
PY  - 2009
VL  - 2009
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a0/
LA  - en
ID  - EJDE_2009__2009__a0
ER  - 
%0 Journal Article
%A Yu, Yuehua
%A Zhao, Changhong
%T Boundedness of solutions for a Liénard equation with multiple deviating arguments
%J Electronic Journal of Differential Equations
%D 2009
%V 2009
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a0/
%G en
%F EJDE_2009__2009__a0
Yu, Yuehua; Zhao, Changhong. Boundedness of solutions for a Liénard equation with multiple deviating arguments. Electronic Journal of Differential Equations, Tome 2009 (2009). http://geodesic.mathdoc.fr/item/EJDE_2009__2009__a0/