Infinitely many solutions for the $p$-Laplace equations with nonsymmetric perturbations
Electronic Journal of Differential Equations, Tome 2008 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study Dirichlet problems involving the p-Laplacian with a nonsymmetric term. By using the large Morse index of the corresponding Laplace equation, we establish an estimate on the growth of the min-max values for a functional associated with the problem. The estimate is better than the given result in some range. We show that the problem possesses infinitely many weak solutions.
Classification : 35J70, 35D50
Keywords: p-Laplacian, large Morse index, nonsymmetric perturbation, infinitely many solutions
@article{EJDE_2008__2008__a92,
     author = {Liu, Disheng and Geng, Di},
     title = {Infinitely many solutions for the $p${-Laplace} equations with nonsymmetric perturbations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2008},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a92/}
}
TY  - JOUR
AU  - Liu, Disheng
AU  - Geng, Di
TI  - Infinitely many solutions for the $p$-Laplace equations with nonsymmetric perturbations
JO  - Electronic Journal of Differential Equations
PY  - 2008
VL  - 2008
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a92/
LA  - en
ID  - EJDE_2008__2008__a92
ER  - 
%0 Journal Article
%A Liu, Disheng
%A Geng, Di
%T Infinitely many solutions for the $p$-Laplace equations with nonsymmetric perturbations
%J Electronic Journal of Differential Equations
%D 2008
%V 2008
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a92/
%G en
%F EJDE_2008__2008__a92
Liu, Disheng; Geng, Di. Infinitely many solutions for the $p$-Laplace equations with nonsymmetric perturbations. Electronic Journal of Differential Equations, Tome 2008 (2008). http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a92/