Multiple positive solutions for singular $m$-point boundary-value problems with nonlinearities depending on the derivative
Electronic Journal of Differential Equations, Tome 2008 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Using the fixed point theorem in cones, this paper shows the existence of multiple positive solutions for the singular $$\displaylines{ x''(t)+a(t)f(t,x(t),x'(t))=0,\quad 01,\cr x'(0)=0,\quad x(1)= \sum_{i=1}^{m-2}a_{i}x(\xi_i), }$$ where $0\xi_1\xi_2\dots\xi_{m-2}1, a_i\in [0,1), i = 1, 2,\dots, m-2$, with $0 \sum_{i=1}^{m-2}a_i 1 $ and $f$ maybe singular at $x=0$ and $x'=0$.
Classification : 34B10, 34B15
Keywords: m-point boundary-value problem, singularity, positive solutions, fixed point theorem
@article{EJDE_2008__2008__a87,
     author = {Ma, Ya and Yan, Baoqiang},
     title = {Multiple positive solutions for singular $m$-point boundary-value problems with nonlinearities depending on the derivative},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2008},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a87/}
}
TY  - JOUR
AU  - Ma, Ya
AU  - Yan, Baoqiang
TI  - Multiple positive solutions for singular $m$-point boundary-value problems with nonlinearities depending on the derivative
JO  - Electronic Journal of Differential Equations
PY  - 2008
VL  - 2008
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a87/
LA  - en
ID  - EJDE_2008__2008__a87
ER  - 
%0 Journal Article
%A Ma, Ya
%A Yan, Baoqiang
%T Multiple positive solutions for singular $m$-point boundary-value problems with nonlinearities depending on the derivative
%J Electronic Journal of Differential Equations
%D 2008
%V 2008
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a87/
%G en
%F EJDE_2008__2008__a87
Ma, Ya; Yan, Baoqiang. Multiple positive solutions for singular $m$-point boundary-value problems with nonlinearities depending on the derivative. Electronic Journal of Differential Equations, Tome 2008 (2008). http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a87/