Almost automorphy of semilinear parabolic evolution equations
Electronic Journal of Differential Equations, Tome 2008 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper studies the existence and uniqueness of almost automorphic mild solutions to the semilinear parabolic evolution equation $$ u'(t)=A(t)u(t)+f(t, u(t)), $$ assuming that the linear operators $A(\cdot)$ satisfy the Acquistapace-Terreni conditions, the evolution family generated by $A(\cdot)$ has an exponential dichotomy, and the resolvent $R(\omega,A(\cdot))$, and $f$ are almost automorphic.
Classification : 34G10, 47D06
Keywords: parabolic evolution equations, almost automorphy, exponential dichotomy, Green's function
@article{EJDE_2008__2008__a70,
     author = {Baroun, Mahmoud and Boulite, Said and N'guerekata, Gaston M. and Maniar, Lahcen},
     title = {Almost automorphy of semilinear parabolic evolution equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2008},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a70/}
}
TY  - JOUR
AU  - Baroun, Mahmoud
AU  - Boulite, Said
AU  - N'guerekata, Gaston M.
AU  - Maniar, Lahcen
TI  - Almost automorphy of semilinear parabolic evolution equations
JO  - Electronic Journal of Differential Equations
PY  - 2008
VL  - 2008
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a70/
LA  - en
ID  - EJDE_2008__2008__a70
ER  - 
%0 Journal Article
%A Baroun, Mahmoud
%A Boulite, Said
%A N'guerekata, Gaston M.
%A Maniar, Lahcen
%T Almost automorphy of semilinear parabolic evolution equations
%J Electronic Journal of Differential Equations
%D 2008
%V 2008
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a70/
%G en
%F EJDE_2008__2008__a70
Baroun, Mahmoud; Boulite, Said; N'guerekata, Gaston M.; Maniar, Lahcen. Almost automorphy of semilinear parabolic evolution equations. Electronic Journal of Differential Equations, Tome 2008 (2008). http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a70/