Existence of global solutions for systems of second-order functional-differential equations with $p$-Laplacian
Electronic Journal of Differential Equations, Tome 2008 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We find sufficient conditions for the existence of global solutions for the systems of functional-differential equations $$ \big(A(t)\Phi_p(y')\big)' + B(t)g(y', y'_t) + R(t)f(y, y_t) = e(t), $$ where $\Phi_p(u) = (|u_1|^{p-1}u_1, \dots, |u_n|^{p-1}u_n)^T$ which is the multidimensional p-Laplacian.
Classification : 34C11, 34K10
Keywords: second order functional-differential equation, p-Laplacian, global solution
@article{EJDE_2008__2008__a64,
     author = {Bartusek, Miroslav and Medved, Milan},
     title = {Existence of global solutions for systems of second-order functional-differential equations with $p${-Laplacian}},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2008},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a64/}
}
TY  - JOUR
AU  - Bartusek, Miroslav
AU  - Medved, Milan
TI  - Existence of global solutions for systems of second-order functional-differential equations with $p$-Laplacian
JO  - Electronic Journal of Differential Equations
PY  - 2008
VL  - 2008
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a64/
LA  - en
ID  - EJDE_2008__2008__a64
ER  - 
%0 Journal Article
%A Bartusek, Miroslav
%A Medved, Milan
%T Existence of global solutions for systems of second-order functional-differential equations with $p$-Laplacian
%J Electronic Journal of Differential Equations
%D 2008
%V 2008
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a64/
%G en
%F EJDE_2008__2008__a64
Bartusek, Miroslav; Medved, Milan. Existence of global solutions for systems of second-order functional-differential equations with $p$-Laplacian. Electronic Journal of Differential Equations, Tome 2008 (2008). http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a64/