Blowup and life span bounds for a reaction-diffusion equation with a time-dependent generator
Electronic Journal of Differential Equations, Tome 2008 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the nonlinear equation $$ \frac{\partial}{\partial t} u (t) = k (t) \Delta _{\alpha }u (t) + u^{1+\beta } (t),\quad u(0,x)=\lambda \varphi (x),\; x\in \mathbb{R} ^{d}, $$ where $\Delta _{\alpha }:=-(-\Delta)^{\alpha /2}$ denotes the fractional power of the Laplacian; $0\alpha \leq 2, \lambda, \beta >0$ are constants; $ \varphi$ is bounded, continuous, nonnegative function that does not vanish identically; and $k$ is a locally integrable function. We prove that any combination of positive parameters $d,\alpha,\rho,\beta$, obeying $0$, yields finite time blow up of any nontrivial positive solution. Also we obtain upper and lower bounds for the life span of the solution, and show that the life span satisfies $T_{\lambda\varphi}\sim \lambda^{-\alpha \beta /(\alpha -d\rho \beta )}$ near $\lambda=0$.
Classification : 60H30, 35K55, 35K57, 35B35
Keywords: semilinear evolution equations, Feynman-Kac representation, critical exponent, finite time blowup, nonglobal solution, life span
@article{EJDE_2008__2008__a60,
     author = {Kolkovska, Ekaterina T. and Lopez-Mimbela, Jose Alfredo and Perez, Aroldo},
     title = {Blowup and life span bounds for a reaction-diffusion equation with a time-dependent generator},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2008},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a60/}
}
TY  - JOUR
AU  - Kolkovska, Ekaterina T.
AU  - Lopez-Mimbela, Jose Alfredo
AU  - Perez, Aroldo
TI  - Blowup and life span bounds for a reaction-diffusion equation with a time-dependent generator
JO  - Electronic Journal of Differential Equations
PY  - 2008
VL  - 2008
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a60/
LA  - en
ID  - EJDE_2008__2008__a60
ER  - 
%0 Journal Article
%A Kolkovska, Ekaterina T.
%A Lopez-Mimbela, Jose Alfredo
%A Perez, Aroldo
%T Blowup and life span bounds for a reaction-diffusion equation with a time-dependent generator
%J Electronic Journal of Differential Equations
%D 2008
%V 2008
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a60/
%G en
%F EJDE_2008__2008__a60
Kolkovska, Ekaterina T.; Lopez-Mimbela, Jose Alfredo; Perez, Aroldo. Blowup and life span bounds for a reaction-diffusion equation with a time-dependent generator. Electronic Journal of Differential Equations, Tome 2008 (2008). http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a60/