Remarks on the strong maximum principle for nonlocal operators
Electronic Journal of Differential Equations, Tome 2008 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this note, we study the existence of a strong maximum principle for the nonlocal operator $$ \mathcal{M}[u](x) :=\int_{G}J(g)u(x*g^{-1})d\mu(g) - u(x), $$ where $G$ is a topological group acting continuously on a Hausdorff space $X$ and $u \in C(X)$. First we investigate the general situation and derive a pre-maximum principle. Then we restrict our analysis to the case of homogeneous spaces (i.e., $ X=G /H$). For such Hausdorff spaces, depending on the topology, we give a condition on $J$ such that a strong maximum principle holds for $\mathcal{M}$. We also revisit the classical case of the convolution operator (i.e. $G=(\mathbb{R}^n,+), X=\mathbb{R}^n, d\mu =dy)$.
Classification : 35B50, 47G20, 35J60
Keywords: nonlocal diffusion operators, maximum principles, geometric condition
@article{EJDE_2008__2008__a52,
     author = {Coville, Jerome},
     title = {Remarks on the strong maximum principle for nonlocal operators},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2008},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a52/}
}
TY  - JOUR
AU  - Coville, Jerome
TI  - Remarks on the strong maximum principle for nonlocal operators
JO  - Electronic Journal of Differential Equations
PY  - 2008
VL  - 2008
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a52/
LA  - en
ID  - EJDE_2008__2008__a52
ER  - 
%0 Journal Article
%A Coville, Jerome
%T Remarks on the strong maximum principle for nonlocal operators
%J Electronic Journal of Differential Equations
%D 2008
%V 2008
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a52/
%G en
%F EJDE_2008__2008__a52
Coville, Jerome. Remarks on the strong maximum principle for nonlocal operators. Electronic Journal of Differential Equations, Tome 2008 (2008). http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a52/