Perturbed functional and neutral functional evolution equations with infinite delay in Fréchet spaces
Electronic Journal of Differential Equations, Tome 2008 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article shows sufficient conditions for the existence of mild solutions, on the positive half-line, for two classes of first-order functional and neutral functional perturbed differential evolution equations with infinite delay. Our main tools are: the nonlinear alternative proved by Avramescu for the sum of contractions and completely continuous maps in Frechet spaces, and the semigroup theory.
Classification : 34G20, 34K40
Keywords: perturbed functional equation, neutral evolution equations, mild solution, fixed-point theory, nonlinear alternative, Fréchet spaces, infinite delay
@article{EJDE_2008__2008__a41,
     author = {Baghli, Selma and Benchohra, Mouffak},
     title = {Perturbed functional and neutral functional evolution equations with infinite delay in {Fr\'echet} spaces},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2008},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a41/}
}
TY  - JOUR
AU  - Baghli, Selma
AU  - Benchohra, Mouffak
TI  - Perturbed functional and neutral functional evolution equations with infinite delay in Fréchet spaces
JO  - Electronic Journal of Differential Equations
PY  - 2008
VL  - 2008
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a41/
LA  - en
ID  - EJDE_2008__2008__a41
ER  - 
%0 Journal Article
%A Baghli, Selma
%A Benchohra, Mouffak
%T Perturbed functional and neutral functional evolution equations with infinite delay in Fréchet spaces
%J Electronic Journal of Differential Equations
%D 2008
%V 2008
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a41/
%G en
%F EJDE_2008__2008__a41
Baghli, Selma; Benchohra, Mouffak. Perturbed functional and neutral functional evolution equations with infinite delay in Fréchet spaces. Electronic Journal of Differential Equations, Tome 2008 (2008). http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a41/