Liapunov exponents for higher-order linear differential equations whose characteristic equations have variable real roots
Electronic Journal of Differential Equations, Tome 2008 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the linear differential equation $$ \sum_{k=0}^n a_k(t)x^{(n-k)}(t)=0\quad t\geq 0, \; n\geq 2, $$ where $a_0(t)\equiv 1, a_k(t)$ are continuous bounded functions. Assuming that all the roots of the polynomial $z^n+a_1(t)z^{n-1}+ \dots +a_n(t)$ are real and satisfy the inequality $r_k(t)\gamma$ for $t\geq 0$ and $k=1, \dots, n$, we prove that the solutions of the above equation satisfy $|x(t)|\leq \hbox{ const} e^{\gamma t}$ for $t\geq 0$.
Classification : 34A30, 34D20
Keywords: linear differential equations, Liapunov exponents, exponential stability
@article{EJDE_2008__2008__a40,
     author = {Gil', Michael I.},
     title = {Liapunov exponents for higher-order linear differential equations whose characteristic equations have variable real roots},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2008},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a40/}
}
TY  - JOUR
AU  - Gil', Michael I.
TI  - Liapunov exponents for higher-order linear differential equations whose characteristic equations have variable real roots
JO  - Electronic Journal of Differential Equations
PY  - 2008
VL  - 2008
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a40/
LA  - en
ID  - EJDE_2008__2008__a40
ER  - 
%0 Journal Article
%A Gil', Michael I.
%T Liapunov exponents for higher-order linear differential equations whose characteristic equations have variable real roots
%J Electronic Journal of Differential Equations
%D 2008
%V 2008
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a40/
%G en
%F EJDE_2008__2008__a40
Gil', Michael I. Liapunov exponents for higher-order linear differential equations whose characteristic equations have variable real roots. Electronic Journal of Differential Equations, Tome 2008 (2008). http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a40/