Darcy-type law associated to an optimal control problem
Electronic Journal of Differential Equations, Tome 2008 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The aim of this paper is to study the asymptotic behaviour (homogenization) of an optimal control problem in a periodically perforated domain with Dirichlet condition on the boundary of the holes. The optimal control problem considered here is governed by the Stokes system. The holes are assumed to be of the same order as that of the period. The homogenized limit of the Stokes system as well as its adjoint system arising from the optimal control problem is obtained. The convergence of the optimal control and cost functional is obtained on some specific control sets.
Classification : 35B27, 49J20, 76D07
Keywords: homogenization, two-scale convergence, Stokes equation, optimal control, porous medium
@article{EJDE_2008__2008__a32,
     author = {Muthukumar, T. and Nandakumaran, A.K.},
     title = {Darcy-type law associated to an optimal control problem},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2008},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a32/}
}
TY  - JOUR
AU  - Muthukumar, T.
AU  - Nandakumaran, A.K.
TI  - Darcy-type law associated to an optimal control problem
JO  - Electronic Journal of Differential Equations
PY  - 2008
VL  - 2008
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a32/
LA  - en
ID  - EJDE_2008__2008__a32
ER  - 
%0 Journal Article
%A Muthukumar, T.
%A Nandakumaran, A.K.
%T Darcy-type law associated to an optimal control problem
%J Electronic Journal of Differential Equations
%D 2008
%V 2008
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a32/
%G en
%F EJDE_2008__2008__a32
Muthukumar, T.; Nandakumaran, A.K. Darcy-type law associated to an optimal control problem. Electronic Journal of Differential Equations, Tome 2008 (2008). http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a32/