Well-posedness for some perturbations of the KdV equation with low regularity data
Electronic Journal of Differential Equations, Tome 2008 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study some well-posedness issues of the initial value problem associated with the equation $$ u_t+u_{xxx}+\eta Lu+uu_x=0, \quad x \in \mathbb{R}, \; t\geq 0, $$ where $\eta>0, \widehat{Lu}(\xi)=-\Phi(\xi)\hat{u}(\xi)$ and $\Phi \in \mathbb{R}$ is bounded above. Using the theory developed by Bourgain and Kenig, Ponce and Vega, we prove that the initial value problem is locally well-posed for given data in Sobolev spaces $H^s(\mathbb{R})$ with regularity below $L^2$. Examples of this model are the Ostrovsky-Stepanyams-Tsimring equation for $\Phi(\xi)=|\xi|-|\xi|^3$, the derivative Korteweg-de Vries-Kuramoto-Sivashinsky equation for $\Phi(\xi)=\xi^2-\xi^4$, and the Korteweg-de Vries-Burguers equation for $\Phi(\xi)=-\xi^2$.
Classification : 35A07, 35Q53
Keywords: Bourgain spaces, KdV equation, local smoothing effect
@article{EJDE_2008__2008__a18,
     author = {Carvajal, Xavier and Panthee, Mahendra},
     title = {Well-posedness for some perturbations of the {KdV} equation with low regularity data},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2008},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a18/}
}
TY  - JOUR
AU  - Carvajal, Xavier
AU  - Panthee, Mahendra
TI  - Well-posedness for some perturbations of the KdV equation with low regularity data
JO  - Electronic Journal of Differential Equations
PY  - 2008
VL  - 2008
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a18/
LA  - en
ID  - EJDE_2008__2008__a18
ER  - 
%0 Journal Article
%A Carvajal, Xavier
%A Panthee, Mahendra
%T Well-posedness for some perturbations of the KdV equation with low regularity data
%J Electronic Journal of Differential Equations
%D 2008
%V 2008
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a18/
%G en
%F EJDE_2008__2008__a18
Carvajal, Xavier; Panthee, Mahendra. Well-posedness for some perturbations of the KdV equation with low regularity data. Electronic Journal of Differential Equations, Tome 2008 (2008). http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a18/