Terminal value problems for first and second order nonlinear equations on time scales
Electronic Journal of Differential Equations, Tome 2008 (2008).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we examine "terminal" value problems for dynamic equations on time scales - that is, a dynamic equation whose solutions are asymptotic at infinity. We present a number of new theorems that guarantee the existence and uniqueness of solutions, as well as some comparison-type results. The methods we employ feature dynamic inequalities, weighted norms, and fixed-point theory.
Classification : 34C99, 39A10
Keywords: time scale, terminal value problem, nonlinear equation, Banach fixed point theorem, bounded solution, weighted norm
@article{EJDE_2008__2008__a15,
     author = {Hilscher, Roman and Tisdell, Christopher C.},
     title = {Terminal value problems for first and second order nonlinear equations on time scales},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2008},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a15/}
}
TY  - JOUR
AU  - Hilscher, Roman
AU  - Tisdell, Christopher C.
TI  - Terminal value problems for first and second order nonlinear equations on time scales
JO  - Electronic Journal of Differential Equations
PY  - 2008
VL  - 2008
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a15/
LA  - en
ID  - EJDE_2008__2008__a15
ER  - 
%0 Journal Article
%A Hilscher, Roman
%A Tisdell, Christopher C.
%T Terminal value problems for first and second order nonlinear equations on time scales
%J Electronic Journal of Differential Equations
%D 2008
%V 2008
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a15/
%G en
%F EJDE_2008__2008__a15
Hilscher, Roman; Tisdell, Christopher C. Terminal value problems for first and second order nonlinear equations on time scales. Electronic Journal of Differential Equations, Tome 2008 (2008). http://geodesic.mathdoc.fr/item/EJDE_2008__2008__a15/