On asymptotic behaviour of oscillatory solutions for fourth order differential equations
Electronic Journal of Differential Equations, Tome 2007 (2007).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We establish sufficient conditions for the linear differential equations of fourth order $$ (r(t)y'''(t))' =a(t)y(t)+b(t)y'(t)+c(t)y''(t)+f(t) $$ so that all oscillatory solutions of the equation satisfy $$ \lim_{t\to\infty}y(t)=\lim_{t\to\infty}y'(t)=\lim_{t\to\infty}y''(t)= \lim_{t\to\infty}r(t)y'''(t)=0, $$ where $r:[0,\infty)\to(0,\infty),a,b,c$ and $f:[0,\infty)\to R$ are continuous functions. A suitable Green's function and its estimates are used in this paper.
Classification : 34C10
Keywords: oscillatory solution, asymptotic behaviour
@article{EJDE_2007__2007__a74,
     author = {Padhi, Seshadev and Qian, Chuanxi},
     title = {On asymptotic behaviour of oscillatory solutions for fourth order differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2007},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a74/}
}
TY  - JOUR
AU  - Padhi, Seshadev
AU  - Qian, Chuanxi
TI  - On asymptotic behaviour of oscillatory solutions for fourth order differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2007
VL  - 2007
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a74/
LA  - en
ID  - EJDE_2007__2007__a74
ER  - 
%0 Journal Article
%A Padhi, Seshadev
%A Qian, Chuanxi
%T On asymptotic behaviour of oscillatory solutions for fourth order differential equations
%J Electronic Journal of Differential Equations
%D 2007
%V 2007
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a74/
%G en
%F EJDE_2007__2007__a74
Padhi, Seshadev; Qian, Chuanxi. On asymptotic behaviour of oscillatory solutions for fourth order differential equations. Electronic Journal of Differential Equations, Tome 2007 (2007). http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a74/