A fibering map approach to a semilinear elliptic boundary value problem
Electronic Journal of Differential Equations, Tome 2007 (2007).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove the existence of at least two positive solutions for the semilinear elliptic boundary-value problem $$ -\Delta u(x) = \lambda a(x) u^q + b(x) u^p \quad\hbox{for } x \in \Omega; \quad u(x) = 0 \quad \hbox{for } x \in \partial \Omega $$ on a bounded region $\Omega$ by using the Nehari manifold and the fibering maps associated with the Euler functional for the problem. We show how knowledge of the fibering maps for the problem leads to very easy existence proofs.
Classification : 35J20, 36J65
Keywords: semilinear elliptic boundary value problem, variational methods, Nehari manifold, fibering map
@article{EJDE_2007__2007__a71,
     author = {Brown, Kenneth J. and Wu, Tsung-Fang},
     title = {A fibering map approach to a semilinear elliptic boundary value problem},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2007},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a71/}
}
TY  - JOUR
AU  - Brown, Kenneth J.
AU  - Wu, Tsung-Fang
TI  - A fibering map approach to a semilinear elliptic boundary value problem
JO  - Electronic Journal of Differential Equations
PY  - 2007
VL  - 2007
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a71/
LA  - en
ID  - EJDE_2007__2007__a71
ER  - 
%0 Journal Article
%A Brown, Kenneth J.
%A Wu, Tsung-Fang
%T A fibering map approach to a semilinear elliptic boundary value problem
%J Electronic Journal of Differential Equations
%D 2007
%V 2007
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a71/
%G en
%F EJDE_2007__2007__a71
Brown, Kenneth J.; Wu, Tsung-Fang. A fibering map approach to a semilinear elliptic boundary value problem. Electronic Journal of Differential Equations, Tome 2007 (2007). http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a71/