Almost periodic solutions for higher-order Hopfield neural networks without bounded activation functions
Electronic Journal of Differential Equations, Tome 2007 (2007).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we consider higher-order Hopfield neural networks (HHNNs) with time-varying delays. Based on the fixed point theorem, Lyapunov functional method, differential inequality techniques, and without assuming the boundedness on the activation functions, we establish sufficient conditions for the existence and local exponential stability of the almost periodic solutions. The results of this paper are new and they complement previously known results.
Classification : 34C25, 34K13
Keywords: high-order Hopfield neural networks, almost periodic solution, exponential stability, time-varying delays
@article{EJDE_2007__2007__a299,
     author = {Zhang, Fuxing and Li, Ya},
     title = {Almost periodic solutions for higher-order {Hopfield} neural networks without bounded activation functions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2007},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a299/}
}
TY  - JOUR
AU  - Zhang, Fuxing
AU  - Li, Ya
TI  - Almost periodic solutions for higher-order Hopfield neural networks without bounded activation functions
JO  - Electronic Journal of Differential Equations
PY  - 2007
VL  - 2007
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a299/
LA  - en
ID  - EJDE_2007__2007__a299
ER  - 
%0 Journal Article
%A Zhang, Fuxing
%A Li, Ya
%T Almost periodic solutions for higher-order Hopfield neural networks without bounded activation functions
%J Electronic Journal of Differential Equations
%D 2007
%V 2007
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a299/
%G en
%F EJDE_2007__2007__a299
Zhang, Fuxing; Li, Ya. Almost periodic solutions for higher-order Hopfield neural networks without bounded activation functions. Electronic Journal of Differential Equations, Tome 2007 (2007). http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a299/