Uniqueness of entropy solutions to nonlinear elliptic-parabolic problems
Electronic Journal of Differential Equations, Tome 2007 (2007).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the Cauchy problem associated with the nonlinear elliptic - parabolic equation $$ b(u)_{t}-a(u,\varphi(u)_x)_x=f. $$ We prove an $L^{1}$-contraction principle and hence the uniqueness of entropy solutions, under rather general assumptions on the data.
Classification : 35K65, 35L65
Keywords: elliptic, parabolic, degenerate, weak solution, entropy solution, L1-contraction principle
@article{EJDE_2007__2007__a292,
     author = {Ouaro, Stanislas and Toure, Hamidou},
     title = {Uniqueness of entropy solutions to nonlinear elliptic-parabolic problems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2007},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a292/}
}
TY  - JOUR
AU  - Ouaro, Stanislas
AU  - Toure, Hamidou
TI  - Uniqueness of entropy solutions to nonlinear elliptic-parabolic problems
JO  - Electronic Journal of Differential Equations
PY  - 2007
VL  - 2007
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a292/
LA  - en
ID  - EJDE_2007__2007__a292
ER  - 
%0 Journal Article
%A Ouaro, Stanislas
%A Toure, Hamidou
%T Uniqueness of entropy solutions to nonlinear elliptic-parabolic problems
%J Electronic Journal of Differential Equations
%D 2007
%V 2007
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a292/
%G en
%F EJDE_2007__2007__a292
Ouaro, Stanislas; Toure, Hamidou. Uniqueness of entropy solutions to nonlinear elliptic-parabolic problems. Electronic Journal of Differential Equations, Tome 2007 (2007). http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a292/