Forced oscillations for delay motion equations on manifolds
Electronic Journal of Differential Equations, Tome 2007 (2007).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove an existence result for $T$-periodic solutions of a $T$-periodic second order delay differential equation on a boundaryless compact manifold with nonzero Euler-Poincare characteristic. The approach is based on an existence result recently obtained by the authors for first order delay differential equations on compact manifolds with boundary.
Classification : 34K13, 37C25
Keywords: delay differential equations, forced oscillations, periodic solutions, compact manifolds, Euler-Poincarè characteristic, fixed point index
@article{EJDE_2007__2007__a262,
     author = {Benevieri, Pierluigi and Calamai, Alessandro and Furi, Massimo and Pera, Maria Patrizia},
     title = {Forced oscillations for delay motion equations on manifolds},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2007},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a262/}
}
TY  - JOUR
AU  - Benevieri, Pierluigi
AU  - Calamai, Alessandro
AU  - Furi, Massimo
AU  - Pera, Maria Patrizia
TI  - Forced oscillations for delay motion equations on manifolds
JO  - Electronic Journal of Differential Equations
PY  - 2007
VL  - 2007
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a262/
LA  - en
ID  - EJDE_2007__2007__a262
ER  - 
%0 Journal Article
%A Benevieri, Pierluigi
%A Calamai, Alessandro
%A Furi, Massimo
%A Pera, Maria Patrizia
%T Forced oscillations for delay motion equations on manifolds
%J Electronic Journal of Differential Equations
%D 2007
%V 2007
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a262/
%G en
%F EJDE_2007__2007__a262
Benevieri, Pierluigi; Calamai, Alessandro; Furi, Massimo; Pera, Maria Patrizia. Forced oscillations for delay motion equations on manifolds. Electronic Journal of Differential Equations, Tome 2007 (2007). http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a262/