Bernstein approximations of Dirichlet problems for elliptic operators on the plane
Electronic Journal of Differential Equations, Tome 2007 (2007).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the finitely dimensional approximations of the elliptic problem $$\displaylines{ (Lu)(x,y) + \varphi(\lambda,(x,y),u(x,y) ) = 0 \quad \hbox{for } (x,y)\in\Omega\cr u(x,y) = 0 \quad \hbox{for } (x,y)\in\partial\Omega, }$$ defined for a smooth bounded domain $\Omega$ on a plane. The approximations are derived from Bernstein polynomials on a triangle or on a rectangle containing $\Omega$. We deal with approximations of global bifurcation branches of nontrivial solutions as well as certain existence facts.
Classification : 35J25, 41A10
Keywords: Dirichlet problems, Bernstein polynomials, global bifurcation
@article{EJDE_2007__2007__a252,
     author = {Gulgowski, Jacek},
     title = {Bernstein approximations of {Dirichlet} problems for elliptic operators on the plane},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2007},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a252/}
}
TY  - JOUR
AU  - Gulgowski, Jacek
TI  - Bernstein approximations of Dirichlet problems for elliptic operators on the plane
JO  - Electronic Journal of Differential Equations
PY  - 2007
VL  - 2007
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a252/
LA  - en
ID  - EJDE_2007__2007__a252
ER  - 
%0 Journal Article
%A Gulgowski, Jacek
%T Bernstein approximations of Dirichlet problems for elliptic operators on the plane
%J Electronic Journal of Differential Equations
%D 2007
%V 2007
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a252/
%G en
%F EJDE_2007__2007__a252
Gulgowski, Jacek. Bernstein approximations of Dirichlet problems for elliptic operators on the plane. Electronic Journal of Differential Equations, Tome 2007 (2007). http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a252/