Positive solutions of a nonlinear higher order boundary-value problem
Electronic Journal of Differential Equations, Tome 2007 (2007).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The authors consider the higher order boundary-value problem $$\displaylines{ u^{(n)}(t)= q(t)f(u(t)), \quad 0 \leq t \leq 1, \cr u^{(i-1)}(0) = u^{(n-2)}(p) = u^{(n-1)}(1)=0, \quad 1 \leq i \leq n-2, }$$ where $n\ge 4$ is an integer, and $p\in(1/2,1)$ is a constant. Sufficient conditions for the existence and nonexistence of positive solutions of this problem are obtained. The main results are illustrated with an example.
Classification : 34B18
Keywords: existence and nonexistence of positive solutions, guo-Krasnoselskii fixed point theorem, higher order boundary value problem
@article{EJDE_2007__2007__a223,
     author = {Graef, John R. and Henderson, Johnny and Yang, Bo},
     title = {Positive solutions of a nonlinear higher order boundary-value problem},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2007},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a223/}
}
TY  - JOUR
AU  - Graef, John R.
AU  - Henderson, Johnny
AU  - Yang, Bo
TI  - Positive solutions of a nonlinear higher order boundary-value problem
JO  - Electronic Journal of Differential Equations
PY  - 2007
VL  - 2007
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a223/
LA  - en
ID  - EJDE_2007__2007__a223
ER  - 
%0 Journal Article
%A Graef, John R.
%A Henderson, Johnny
%A Yang, Bo
%T Positive solutions of a nonlinear higher order boundary-value problem
%J Electronic Journal of Differential Equations
%D 2007
%V 2007
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a223/
%G en
%F EJDE_2007__2007__a223
Graef, John R.; Henderson, Johnny; Yang, Bo. Positive solutions of a nonlinear higher order boundary-value problem. Electronic Journal of Differential Equations, Tome 2007 (2007). http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a223/