Sufficient conditions for nonexistence of gradient blow-up for nonlinear parabolic equations
Electronic Journal of Differential Equations, Tome 2007 (2007).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we study the initial-boundary value problems for nonlinear parabolic equations without Bernstein-Nagumo condition. Sufficient conditions guaranteeing the nonexistence of gradient blow-up are formulated. In particular, we show that for a wide class of nonlinearities the Lipschitz continuity in the space variable together with the strict monotonicity with respect to the solution guarantee that gradient blow-up cannot occur at the boundary or in the interior of the domain.
Classification : 35K55, 35K15, 35A05
Keywords: Bernstein-Nagumo condition, gradient blow-up, a priori estimates nonlinear parabolic equation
@article{EJDE_2007__2007__a172,
     author = {Tersenov, Aris S.},
     title = {Sufficient conditions for nonexistence of gradient blow-up for nonlinear parabolic equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2007},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a172/}
}
TY  - JOUR
AU  - Tersenov, Aris S.
TI  - Sufficient conditions for nonexistence of gradient blow-up for nonlinear parabolic equations
JO  - Electronic Journal of Differential Equations
PY  - 2007
VL  - 2007
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a172/
LA  - en
ID  - EJDE_2007__2007__a172
ER  - 
%0 Journal Article
%A Tersenov, Aris S.
%T Sufficient conditions for nonexistence of gradient blow-up for nonlinear parabolic equations
%J Electronic Journal of Differential Equations
%D 2007
%V 2007
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a172/
%G en
%F EJDE_2007__2007__a172
Tersenov, Aris S. Sufficient conditions for nonexistence of gradient blow-up for nonlinear parabolic equations. Electronic Journal of Differential Equations, Tome 2007 (2007). http://geodesic.mathdoc.fr/item/EJDE_2007__2007__a172/