$L^2$-boundedness and $L^2$-compactness of a class of Fourier integral operators
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we study the $L^2$-boundedness and $L^2$-compactness of a class of Fourier integral operators. These operators are bounded (respectively compact) if the weight of the amplitude is bounded (respectively tends to 0).
Classification : 35S30, 35S05, 47A10, 35P05
Keywords: Fourier integral operators, pseudodifferential operators, symbol and phase, boundedness and compactness
@article{EJDE_2006__2006__a93,
     author = {Messirdi, Bekkai and Senoussaoui, Abderrahmane},
     title = {$L^2$-boundedness and $L^2$-compactness of a class of {Fourier} integral operators},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a93/}
}
TY  - JOUR
AU  - Messirdi, Bekkai
AU  - Senoussaoui, Abderrahmane
TI  - $L^2$-boundedness and $L^2$-compactness of a class of Fourier integral operators
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a93/
LA  - en
ID  - EJDE_2006__2006__a93
ER  - 
%0 Journal Article
%A Messirdi, Bekkai
%A Senoussaoui, Abderrahmane
%T $L^2$-boundedness and $L^2$-compactness of a class of Fourier integral operators
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a93/
%G en
%F EJDE_2006__2006__a93
Messirdi, Bekkai; Senoussaoui, Abderrahmane. $L^2$-boundedness and $L^2$-compactness of a class of Fourier integral operators. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a93/