Existence of solutions for nonconvex second-order differential inclusions in the infinite dimensional space
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove the existence of solutions to the differential inclusion $$ \ddot{x}(t)\in F(x(t),\dot{x}(t))+f(t,x(t),\dot{x}(t)), \quad x(0)=x_{0}, \quad \dot{x}(0)=y_{0}, $$ where $f$ is a Caratheodory function and $F$ with nonconvex values in a Hilbert space such that $F(x,y)\subset \gamma (\partial g(y))$, with $g$ a regular locally Lipschitz function and $\gamma $ a linear operator.
Classification : 34A60, 49J52
Keywords: nonconvex differential inclusions, uniformly regular functions
@article{EJDE_2006__2006__a90,
     author = {Haddad, Tahar and Yarou, Mustapha},
     title = {Existence of solutions for nonconvex second-order differential inclusions in the infinite dimensional space},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a90/}
}
TY  - JOUR
AU  - Haddad, Tahar
AU  - Yarou, Mustapha
TI  - Existence of solutions for nonconvex second-order differential inclusions in the infinite dimensional space
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a90/
LA  - en
ID  - EJDE_2006__2006__a90
ER  - 
%0 Journal Article
%A Haddad, Tahar
%A Yarou, Mustapha
%T Existence of solutions for nonconvex second-order differential inclusions in the infinite dimensional space
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a90/
%G en
%F EJDE_2006__2006__a90
Haddad, Tahar; Yarou, Mustapha. Existence of solutions for nonconvex second-order differential inclusions in the infinite dimensional space. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a90/