Solving $p$-Laplacian equations on complete manifolds
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Using a reduced version of the sub and super-solutions method, we prove that the equation $\Delta _{p}u+ku^{p-1}-Ku^{p^{\ast }-1}=0$ has a positive solution on a complete Riemannian manifold for appropriate functions $k,K:M\to \mathbb{R}$.
Classification : 31C45, 53C21
Keywords: differential geometry, nonlinear partial differential equations
@article{EJDE_2006__2006__a53,
     author = {Benalili, Mohammed and Maliki, Youssef},
     title = {Solving $p${-Laplacian} equations on complete manifolds},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a53/}
}
TY  - JOUR
AU  - Benalili, Mohammed
AU  - Maliki, Youssef
TI  - Solving $p$-Laplacian equations on complete manifolds
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a53/
LA  - en
ID  - EJDE_2006__2006__a53
ER  - 
%0 Journal Article
%A Benalili, Mohammed
%A Maliki, Youssef
%T Solving $p$-Laplacian equations on complete manifolds
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a53/
%G en
%F EJDE_2006__2006__a53
Benalili, Mohammed; Maliki, Youssef. Solving $p$-Laplacian equations on complete manifolds. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a53/