Exact controllability of generalized Hammerstein type integral equation and applications
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study the exact controllability of an abstract model described by the controlled generalized Hammerstein type integral equation $$ x(t) = \int_0^t h(t,s)u(s)ds+ \int_0^t k(t,s,x)f(s,x(s))ds, \quad 0 \leq t \leq T less than \infty, $$ where, the state $x(t)$ lies in a Hilbert space $H$ and control $u(t)$ lies another Hilbert space $V$ for each time $t \in I=[0,T], T$. We establish the controllability result under suitable assumptions on $h, k$ and $f$ using the monotone operator theory.
Classification : 93B05, 93C10
Keywords: exact controllability, Hammerstein type integral equation, monotone operator, solution operator
@article{EJDE_2006__2006__a48,
     author = {Chalishajar, Dimplekumar N. and George, Raju K.},
     title = {Exact controllability of generalized {Hammerstein} type integral equation and applications},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a48/}
}
TY  - JOUR
AU  - Chalishajar, Dimplekumar N.
AU  - George, Raju K.
TI  - Exact controllability of generalized Hammerstein type integral equation and applications
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a48/
LA  - en
ID  - EJDE_2006__2006__a48
ER  - 
%0 Journal Article
%A Chalishajar, Dimplekumar N.
%A George, Raju K.
%T Exact controllability of generalized Hammerstein type integral equation and applications
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a48/
%G en
%F EJDE_2006__2006__a48
Chalishajar, Dimplekumar N.; George, Raju K. Exact controllability of generalized Hammerstein type integral equation and applications. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a48/