Generalized eigenfunctions of relativistic Schrödinger operators. I
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Generalized eigenfunctions of the 3-dimensional relativistic Schrodinger operator $\sqrt{-\Delta} + V(x)$ with $|V(x)|\le C \langle x \rangle^{{-\sigma}}, \sigma > 1$, are considered. We construct the generalized eigenfunctions by exploiting results on the limiting absorption principle. We compute explicitly the integral kernel of $(\sqrt{-\Delta}-z)^{-1}, z \in {\mathbb C}\setminus [0, +\infty)$, which has nothing in common with the integral kernel of $({-\Delta}-z)^{-1}$, but the leading term of the integral kernels of the boundary values $(\sqrt{-\Delta}-\lambda \mp i0)^{-1}, \lambda$, turn out to be the same, up to a constant, as the integral kernels of the boundary values $({-\Delta}-\lambda \mp i0)^{-1}$. This fact enables us to show that the asymptotic behavior, as $|x| \to +\infty$, of the generalized eigenfunction of $\sqrt{-\Delta} + V(x)$ is equal to the sum of a plane wave and a spherical wave when $\sigma$.
Classification : 35P99, 35S99, 47G30, 47A40
Keywords: relativistic Schrödinger operators, pseudo-relativistic Hamiltonians, generalized eigenfunctions, Riesz potentials, radiation conditions
@article{EJDE_2006__2006__a28,
     author = {Umeda, Tomio},
     title = {Generalized eigenfunctions of relativistic {Schr\"odinger} operators. {I}},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a28/}
}
TY  - JOUR
AU  - Umeda, Tomio
TI  - Generalized eigenfunctions of relativistic Schrödinger operators. I
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a28/
LA  - en
ID  - EJDE_2006__2006__a28
ER  - 
%0 Journal Article
%A Umeda, Tomio
%T Generalized eigenfunctions of relativistic Schrödinger operators. I
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a28/
%G en
%F EJDE_2006__2006__a28
Umeda, Tomio. Generalized eigenfunctions of relativistic Schrödinger operators. I. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a28/