Periodic solutions for functional differential equations with periodic delay close to zero
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper studies the existence of periodic solutions to the delay differential equation $$ \dot{x}(t)=f(x(t-\mu\tau(t)),\epsilon)\,. $$ The analysis is based on a perturbation method previously used for retarded differential equations with constant delay. By transforming the studied equation into a perturbed non-autonomous ordinary equation and using a bifurcation result and the Poincare procedure for this last equation, we prove the existence of a branch of periodic solutions, for the periodic delay equation, bifurcating from $\mu=0$.
Classification : 34K13
Keywords: differential equation, periodic delay, bifurcation, h-asymptotic stability, periodic solution
@article{EJDE_2006__2006__a162,
     author = {Hbid, My Lhassan and Qesmi, Redouane},
     title = {Periodic solutions for functional differential equations with periodic delay close to zero},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a162/}
}
TY  - JOUR
AU  - Hbid, My Lhassan
AU  - Qesmi, Redouane
TI  - Periodic solutions for functional differential equations with periodic delay close to zero
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a162/
LA  - en
ID  - EJDE_2006__2006__a162
ER  - 
%0 Journal Article
%A Hbid, My Lhassan
%A Qesmi, Redouane
%T Periodic solutions for functional differential equations with periodic delay close to zero
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a162/
%G en
%F EJDE_2006__2006__a162
Hbid, My Lhassan; Qesmi, Redouane. Periodic solutions for functional differential equations with periodic delay close to zero. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a162/