Truncated gradient flows of the van der Waals free energy
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We employ the Pade approximation to derive a set of new partial differential equations, which can be put forward as possible models for phase transitions in solids. We start from a nonlocal free energy functional, we expand in Taylor series the interface part of this energy, and then consider gradient flows for truncations of the resulting expression. We shall discuss here issues related to the existence and uniqueness of solutions of the newly obtained equations, as well as the convergence of the solutions of these equations to the solution of a nonlocal version of the Allen-Cahn equation.
Classification : 47H20, 45J05, 35K55, 41A21
Keywords: gradient flow, van der Waals energy, integro-differential equation, Padé approximants
@article{EJDE_2006__2006__a161,
     author = {Grinfeld, Michael and Stoleriu, Iulian},
     title = {Truncated gradient flows of the van der {Waals} free energy},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a161/}
}
TY  - JOUR
AU  - Grinfeld, Michael
AU  - Stoleriu, Iulian
TI  - Truncated gradient flows of the van der Waals free energy
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a161/
LA  - en
ID  - EJDE_2006__2006__a161
ER  - 
%0 Journal Article
%A Grinfeld, Michael
%A Stoleriu, Iulian
%T Truncated gradient flows of the van der Waals free energy
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a161/
%G en
%F EJDE_2006__2006__a161
Grinfeld, Michael; Stoleriu, Iulian. Truncated gradient flows of the van der Waals free energy. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a161/