Nonclassical shock waves of conservation laws: Flux function having two inflection points
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the Riemann problem for non-genuinely nonlinear conservation laws where the flux function admits two inflection points. This is a simplification of van der Waals fluid pressure, which can be seen as a function of the specific volume for a specific entropy at which the system lacks the non-genuine nonlinearity. Corresponding to each inflection point, A nonclassical Riemann solver can be uniquely constructed. Furthermore, two kinetic relations can be used to construct nonclassical Riemann solutions.
Classification : 35L65, 76N10, 76L05
Keywords: conservation law, non-genuine nonlinearity, nonclassical solution, kinetic relation
@article{EJDE_2006__2006__a155,
     author = {Nghia, Ho Dac and Thanh, Mai Duc},
     title = {Nonclassical shock waves of conservation laws: {Flux} function having two inflection points},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a155/}
}
TY  - JOUR
AU  - Nghia, Ho Dac
AU  - Thanh, Mai Duc
TI  - Nonclassical shock waves of conservation laws: Flux function having two inflection points
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a155/
LA  - en
ID  - EJDE_2006__2006__a155
ER  - 
%0 Journal Article
%A Nghia, Ho Dac
%A Thanh, Mai Duc
%T Nonclassical shock waves of conservation laws: Flux function having two inflection points
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a155/
%G en
%F EJDE_2006__2006__a155
Nghia, Ho Dac; Thanh, Mai Duc. Nonclassical shock waves of conservation laws: Flux function having two inflection points. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a155/