A remark on $C^2$ infinity-harmonic functions
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we prove that any nonconstant, $C^2$ solution of the infinity Laplacian equation $u_{x_i}u_{x_j}u_{x_ix_j}=0$ can not have interior critical points. This result was first proved by Aronsson [2] in two dimensions. When the solution is $C^4$, Evans [6] established a Harnack inequality for $|Du|$, which implies that non-constant $C^4$ solutions have no interior critical points for any dimension. Our method is strongly motivated by the work in [6].
Classification : 35B38
Keywords: infinity Laplacian equation, infinity harmonic function, viscosity solutions
@article{EJDE_2006__2006__a146,
     author = {Yu, Yifeng},
     title = {A remark on $C^2$ infinity-harmonic functions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a146/}
}
TY  - JOUR
AU  - Yu, Yifeng
TI  - A remark on $C^2$ infinity-harmonic functions
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a146/
LA  - en
ID  - EJDE_2006__2006__a146
ER  - 
%0 Journal Article
%A Yu, Yifeng
%T A remark on $C^2$ infinity-harmonic functions
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a146/
%G en
%F EJDE_2006__2006__a146
Yu, Yifeng. A remark on $C^2$ infinity-harmonic functions. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a146/