Blow-up of solutions for an integro-differential equation with a nonlinear source
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the nonlinear viscoelastic wave equation $$ u_{tt}-\Delta u+\int_0^t g(t-s)\Delta u(s)ds=|u|^p u, $$ in a bounded domain, with the initial and Dirichlet boundary conditions. By modifying the method in [15], we prove that there are solutions, under some conditions on the initial data, which blow up in finite time with nonpositive initial energy as well as positive initial energy. Estimates of the lifespan of solutions are also given.
Classification : 35L05, 35L15, 35L70, 37B25
Keywords: blow-up, life span, viscoelastic, integro-differential equation
@article{EJDE_2006__2006__a121,
     author = {Wu, Shun-Tang},
     title = {Blow-up of solutions for an integro-differential equation with a nonlinear source},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a121/}
}
TY  - JOUR
AU  - Wu, Shun-Tang
TI  - Blow-up of solutions for an integro-differential equation with a nonlinear source
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a121/
LA  - en
ID  - EJDE_2006__2006__a121
ER  - 
%0 Journal Article
%A Wu, Shun-Tang
%T Blow-up of solutions for an integro-differential equation with a nonlinear source
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a121/
%G en
%F EJDE_2006__2006__a121
Wu, Shun-Tang. Blow-up of solutions for an integro-differential equation with a nonlinear source. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a121/