Elliptic perturbations for Hammerstein equations with singular nonlinear term
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider a singular elliptic perturbation of a Hammerstein integral equation with singular nonlinear term at the origin. The compactness of the solutions to the perturbed problem and, hence, the existence of a positive solution for the integral equation are proved. Moreover, these results are applied to nonlinear singular homogeneous Dirichlet problems.
Classification : 35B25, 45E99, 45G10, 45L99, 47H14
Keywords: Hammerstein integral equations, existence of positive solutions, singular nonlinear boundary value problems, singular elliptic perturbations
@article{EJDE_2006__2006__a115,
     author = {Coclite, Giuseppe Maria and Coclite, Mario Michele},
     title = {Elliptic perturbations for {Hammerstein} equations with singular nonlinear term},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a115/}
}
TY  - JOUR
AU  - Coclite, Giuseppe Maria
AU  - Coclite, Mario Michele
TI  - Elliptic perturbations for Hammerstein equations with singular nonlinear term
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a115/
LA  - en
ID  - EJDE_2006__2006__a115
ER  - 
%0 Journal Article
%A Coclite, Giuseppe Maria
%A Coclite, Mario Michele
%T Elliptic perturbations for Hammerstein equations with singular nonlinear term
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a115/
%G en
%F EJDE_2006__2006__a115
Coclite, Giuseppe Maria; Coclite, Mario Michele. Elliptic perturbations for Hammerstein equations with singular nonlinear term. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a115/