A global description of solutions to nonlinear perturbations of the Wiener--Hopf integral equations
Electronic Journal of Differential Equations, Tome 2006 (2006).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We establish the solvability, the number of solutions and the covering dimension of the solution set of nonlinear Wiener-Hopf equations. The induced linear mapping is assumed to be of nonnegative index, while the nonlinearities are such that projection like methods are applicable. Solvability of nonlinear integral equations on the real line has been also discussed.
Classification : 47H15, 35L70, 35L75, 35J40
Keywords: number of solutions, covering dimension, Wiener-Hopf equations, nonlinear, (pseudo) A-proper maps, surjectivity
@article{EJDE_2006__2006__a112,
     author = {Milojevi\'c, Petronije S.},
     title = {A global description of solutions to nonlinear perturbations of the {Wiener--Hopf} integral equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2006},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a112/}
}
TY  - JOUR
AU  - Milojević, Petronije S.
TI  - A global description of solutions to nonlinear perturbations of the Wiener--Hopf integral equations
JO  - Electronic Journal of Differential Equations
PY  - 2006
VL  - 2006
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a112/
LA  - en
ID  - EJDE_2006__2006__a112
ER  - 
%0 Journal Article
%A Milojević, Petronije S.
%T A global description of solutions to nonlinear perturbations of the Wiener--Hopf integral equations
%J Electronic Journal of Differential Equations
%D 2006
%V 2006
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a112/
%G en
%F EJDE_2006__2006__a112
Milojević, Petronije S. A global description of solutions to nonlinear perturbations of the Wiener--Hopf integral equations. Electronic Journal of Differential Equations, Tome 2006 (2006). http://geodesic.mathdoc.fr/item/EJDE_2006__2006__a112/