Extinction for fast diffusion equations with nonlinear sources
Electronic Journal of Differential Equations, Tome 2005 (2005).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We establish conditions for the extinction of solutions, in finite time, of the fast diffusion problem $u_t=\Delta u^m+\lambda u^p, 0 less than m less than 1$, in a bounded domain of $R^N$ with $N greater than 2$. More precisely, we show that if $p greater than m$, the solution with small initial data vanishes in finite time, and if $p less than m$, the maximal solution is positive for all $t greater than 0$. If $p=m$, then first eigenvalue of the Dirichlet problem plays a role.
Classification : 35K20, 35K55
Keywords: extinction, fast diffusion, first eigenvalue
@article{EJDE_2005__2005__a90,
     author = {Li, Yuxiang and Wu, Jichun},
     title = {Extinction for fast diffusion equations with nonlinear sources},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2005},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a90/}
}
TY  - JOUR
AU  - Li, Yuxiang
AU  - Wu, Jichun
TI  - Extinction for fast diffusion equations with nonlinear sources
JO  - Electronic Journal of Differential Equations
PY  - 2005
VL  - 2005
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a90/
LA  - en
ID  - EJDE_2005__2005__a90
ER  - 
%0 Journal Article
%A Li, Yuxiang
%A Wu, Jichun
%T Extinction for fast diffusion equations with nonlinear sources
%J Electronic Journal of Differential Equations
%D 2005
%V 2005
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a90/
%G en
%F EJDE_2005__2005__a90
Li, Yuxiang; Wu, Jichun. Extinction for fast diffusion equations with nonlinear sources. Electronic Journal of Differential Equations, Tome 2005 (2005). http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a90/