Positive solutions to a generalized second-order three-point boundary-value problem on time scales
Electronic Journal of Differential Equations, Tome 2005 (2005).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $$\displaylines{ u^{\Delta\nabla}(t)+a(t)f(u(t))=0,\quad t\in[0, T]\subset \mathbb{T},\cr u(0)=\beta u(\eta),\quad u(T)=\alpha u(\eta) }$$ on time scales $\mathbb{T}$, where , $0less than \alpha less than \frac{T}{\eta}, $0 less than betaless than fracT-alphaetaT-eta$$ are given constants.$$
Classification : 34B18, 39A10
Keywords: time scales, three-point boundary value problems, cone, fixed points, positive solutions
@article{EJDE_2005__2005__a88,
     author = {Luo, Hua and Ma, Qiaozhen},
     title = {Positive solutions to a generalized second-order three-point boundary-value problem on time scales},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2005},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a88/}
}
TY  - JOUR
AU  - Luo, Hua
AU  - Ma, Qiaozhen
TI  - Positive solutions to a generalized second-order three-point boundary-value problem on time scales
JO  - Electronic Journal of Differential Equations
PY  - 2005
VL  - 2005
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a88/
LA  - en
ID  - EJDE_2005__2005__a88
ER  - 
%0 Journal Article
%A Luo, Hua
%A Ma, Qiaozhen
%T Positive solutions to a generalized second-order three-point boundary-value problem on time scales
%J Electronic Journal of Differential Equations
%D 2005
%V 2005
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a88/
%G en
%F EJDE_2005__2005__a88
Luo, Hua; Ma, Qiaozhen. Positive solutions to a generalized second-order three-point boundary-value problem on time scales. Electronic Journal of Differential Equations, Tome 2005 (2005). http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a88/