Rectifiability of solutions of the one-dimensional $p$-Laplacian
Electronic Journal of Differential Equations, Tome 2005 (2005).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In the recent papers [8] and [10] a class of Caratheodory functions $f(t,\eta ,\xi )$ rapidly sign-changing near the boundary point $t=a$, has been constructed so that the equation $-(|y'|^{p-2}y')'=f(t,y,y')$ in $(a,b)$ admits continuous bounded solutions $y$ whose graphs $G(y)$ do not possess a finite length. In this paper, the same class of functions $-(|y'|^{p-2}y')'=f(t,y,y')$ will be given, but with slightly different input data compared to those from the previous papers, such that the graph $G(y)$ of each solution $y$ is a rectifiable curve in $\mathbb{R}^{2}$. Moreover, there is a positive constant which does not depend on $y$ so that .
Classification : 35J60, 34B15, 28A75
Keywords: nonlinear p-Laplacian, bounded continuous solutions, graph, qualitative properties, length, rectifiability
@article{EJDE_2005__2005__a72,
     author = {Pasic, Mervan},
     title = {Rectifiability of solutions of the one-dimensional $p${-Laplacian}},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2005},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a72/}
}
TY  - JOUR
AU  - Pasic, Mervan
TI  - Rectifiability of solutions of the one-dimensional $p$-Laplacian
JO  - Electronic Journal of Differential Equations
PY  - 2005
VL  - 2005
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a72/
LA  - en
ID  - EJDE_2005__2005__a72
ER  - 
%0 Journal Article
%A Pasic, Mervan
%T Rectifiability of solutions of the one-dimensional $p$-Laplacian
%J Electronic Journal of Differential Equations
%D 2005
%V 2005
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a72/
%G en
%F EJDE_2005__2005__a72
Pasic, Mervan. Rectifiability of solutions of the one-dimensional $p$-Laplacian. Electronic Journal of Differential Equations, Tome 2005 (2005). http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a72/