Example of an $\infty$-harmonic function which is not $C^2$ on a dense subset
Electronic Journal of Differential Equations, Tome 2005 (2005).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that for certain boundary values, McShane-Whitney's minimal-extension-like function is $\infty$-harmonic near the boundary and is not $C^2$ on a dense subset.
Classification : 35B65, 35J70, 26B05
Keywords: infinity-Laplacian
@article{EJDE_2005__2005__a69,
     author = {Mikayelyan, Hayk},
     title = {Example of an $\infty$-harmonic function which is not $C^2$ on a dense subset},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2005},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a69/}
}
TY  - JOUR
AU  - Mikayelyan, Hayk
TI  - Example of an $\infty$-harmonic function which is not $C^2$ on a dense subset
JO  - Electronic Journal of Differential Equations
PY  - 2005
VL  - 2005
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a69/
LA  - en
ID  - EJDE_2005__2005__a69
ER  - 
%0 Journal Article
%A Mikayelyan, Hayk
%T Example of an $\infty$-harmonic function which is not $C^2$ on a dense subset
%J Electronic Journal of Differential Equations
%D 2005
%V 2005
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a69/
%G en
%F EJDE_2005__2005__a69
Mikayelyan, Hayk. Example of an $\infty$-harmonic function which is not $C^2$ on a dense subset. Electronic Journal of Differential Equations, Tome 2005 (2005). http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a69/