Asymptotic behaviour of solutions to $n$ -order functional differential equations
Electronic Journal of Differential Equations, Tome 2005 (2005).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We establish conditions for the linear differential equation $$ y^{(n)}(t)+p(t)y(g(t))=0 $$ to have property A. Explicit sufficient conditions for the oscillation of the the equation is obtained while dealing with the property A of the equations. A comparison theorem is obtained for the oscillation of the equation with the oscillation of a third order ordinary differential equation.
Classification : 34C10, 34K15
Keywords: oscillatory solution, nonoscillatory solution, property A
@article{EJDE_2005__2005__a37,
     author = {Padhi, Seshadev},
     title = {Asymptotic behaviour of solutions to $n$ -order functional differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2005},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a37/}
}
TY  - JOUR
AU  - Padhi, Seshadev
TI  - Asymptotic behaviour of solutions to $n$ -order functional differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2005
VL  - 2005
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a37/
LA  - en
ID  - EJDE_2005__2005__a37
ER  - 
%0 Journal Article
%A Padhi, Seshadev
%T Asymptotic behaviour of solutions to $n$ -order functional differential equations
%J Electronic Journal of Differential Equations
%D 2005
%V 2005
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a37/
%G en
%F EJDE_2005__2005__a37
Padhi, Seshadev. Asymptotic behaviour of solutions to $n$ -order functional differential equations. Electronic Journal of Differential Equations, Tome 2005 (2005). http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a37/