A multiplicity result for quasilinear problems with convex and concave nonlinearities and nonlinear boundary conditions inunbounded domains
Electronic Journal of Differential Equations, Tome 2005 (2005).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the following quasilinear problem with nonlinear boundary conditions $$\displaylines{ -\Delta_{p}u=\lambda a(x)|u|^{p-2}u+k(x)|u|^{q-2}u-h(x)|u|^{s-2}u, \quad \hbox{in }\Omega,\cr |\nabla u|^{p-2}\nabla u\cdot\eta+b(x)|u|^{p-2}u=0\quad \hbox{on }\partial\Omega, }$$ where $\Omega$ is an unbounded domain in $\mathbb{R}^{N}$ with a noncompact and smooth boundary $\partial\Omega, \eta$ denotes the unit outward normal vector on $\partial\Omega, \Delta_{p}u=\hbox{div\,}(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplacian, $a, k, h$ and $b$ are nonnegative essentially bounded functions, $p^{\ast}$. The properties of the first eigenvalue $\lambda_{1}$ and the associated eigenvectors of the related eigenvalue problem are examined. Then it is shown that if $\lambda=\lambda_{1}$ it admits at least one nonnegative solution. Our approach is variational in character.
Classification : 35J20, 35J60
Keywords: variational method, fibering method, palais-Smale condition, genus
@article{EJDE_2005__2005__a281,
     author = {Kandilakis, Dimitrios A.},
     title = {A multiplicity result for quasilinear problems with convex and concave nonlinearities and nonlinear boundary conditions inunbounded domains},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2005},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a281/}
}
TY  - JOUR
AU  - Kandilakis, Dimitrios A.
TI  - A multiplicity result for quasilinear problems with convex and concave nonlinearities and nonlinear boundary conditions inunbounded domains
JO  - Electronic Journal of Differential Equations
PY  - 2005
VL  - 2005
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a281/
LA  - en
ID  - EJDE_2005__2005__a281
ER  - 
%0 Journal Article
%A Kandilakis, Dimitrios A.
%T A multiplicity result for quasilinear problems with convex and concave nonlinearities and nonlinear boundary conditions inunbounded domains
%J Electronic Journal of Differential Equations
%D 2005
%V 2005
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a281/
%G en
%F EJDE_2005__2005__a281
Kandilakis, Dimitrios A. A multiplicity result for quasilinear problems with convex and concave nonlinearities and nonlinear boundary conditions inunbounded domains. Electronic Journal of Differential Equations, Tome 2005 (2005). http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a281/