Existence of periodic solutions for second-order neutral differential equations
Electronic Journal of Differential Equations, Tome 2005 (2005).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: By means of variational structure and critical point theory, we study the existence of periodic solutions for a second-order neutral differential equation $$\displaylines{ (p(t) x' (t - \tau ))' + f(t, x(t), x(t-\tau ), x(t-2\tau) ) = g(t),\cr x(0) = x(2k\tau), x'(0) = x'(2k\tau). }$$ where $k$ is a given positive integer and $\tau$ is a positive number.
Classification : 34K13, 34K40, 65K10
Keywords: neutral differential equations, periodic solution, variational method, critical point
@article{EJDE_2005__2005__a275,
     author = {Li, Yongjin},
     title = {Existence of periodic solutions for second-order neutral differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2005},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a275/}
}
TY  - JOUR
AU  - Li, Yongjin
TI  - Existence of periodic solutions for second-order neutral differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2005
VL  - 2005
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a275/
LA  - en
ID  - EJDE_2005__2005__a275
ER  - 
%0 Journal Article
%A Li, Yongjin
%T Existence of periodic solutions for second-order neutral differential equations
%J Electronic Journal of Differential Equations
%D 2005
%V 2005
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a275/
%G en
%F EJDE_2005__2005__a275
Li, Yongjin. Existence of periodic solutions for second-order neutral differential equations. Electronic Journal of Differential Equations, Tome 2005 (2005). http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a275/